IMPORTANT NOTICE ABOUT THIS DOCUMENT

NFPA codes and standards, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

NOTICES

All questions or other communications relating to this document and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

Users of this document should be aware that this document may be amended from time to time through the issuance of Tentative Interim Amendments, and that an official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments then in effect. In order to determine whether this document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments, consult appropriate NFPA publications such as the National Fire Codes® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed above.

A statement, written or oral, that is not processed in accordance with Section 16 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of this document, and the NFPA disclaims liability of the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this document should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so.
Licensing Policy

This document is copyrighted by the National Fire Protection Association (NFPA). By making this document available for use and adoption by public authorities and others, the NFPA does not waive any rights in copyright to this document.

1. Adoption by Reference – Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term “adoption by reference” means the citing of title and publishing information only.

2. Adoption by Transcription – A. Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA’s copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction’s lawmaking or rule-making process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA’s copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby.

3. Scope of License Grant – The terms and conditions set forth above do not extend to the index of this document. (For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.)
NFPA 90A

Standard for the Installation of Air-Conditioning and Ventilating Systems

1999 Edition

This edition of NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems, was prepared by the Technical Committee on Air Conditioning and acted on by the National Fire Protection Association, Inc., at its May Meeting held May 17–20, 1999, in Baltimore, MD. It was issued by the Standards Council on July 22, 1999, with an effective date of August 13, 1999, and supersedes all previous editions.

Changes other than editorial are indicated by a vertical rule in the margin of the pages on which they appear. These lines are included as an aid to the user in identifying changes from the previous edition.

This edition of NFPA 90A was approved as an American National Standard on August 13, 1999.

Origin and Development of NFPA 90A

This standard dates from 1899, when committee attention was first given to blower and exhaust systems. Prior to 1936, the subject of air conditioning was covered in NFPA 91, Standard on Blower Systems. In 1937, a separate document, NFPA 90, Standard on Air Conditioning, Warm Air Heating, Air Cooling and Ventilating Systems, was developed. This standard was initially adopted in 1937, with many subsequent amendments through the 1978 edition. Since 1955, the two parts of NFPA 90 have been published separately as NFPA 90A and NFPA 90B, Standard for Installation of Warm Air Heating and Air-Conditioning Systems.

The 1985 edition amended the 1981 edition, which was a complete revision. The 1989 edition was a complete rewrite, which was drafted using the “clean sheet” approach. In 1989, the protection methods specified as well as the chapter organization differed from earlier editions.

The 1993 edition instituted changes in plenum cavity materials use, fire damper testing-acceptance criteria, and testing and maintenance of systems.

The 1996 edition contained revisions that were minor in nature. Some of these revisions were to be consistent with NFPA 101®, Life Safety Code®, to update reference documents, and to provide editorial clarification.

The 1999 edition clarifies requirements for fire properties of supplementary materials in plenums. Figure 3-3 has been relocated to Appendix A as it depicts examples of requirements in the standard. Other changes are minor or editorial in nature.
Technical Committee on Air Conditioning

William A. Webb, Chair
Performance Technology Consulting, Ltd, IL [SE]

Charles E. Ahlter, DHCD-Jackson Center, VA [E]
Rep. Five Marathons Ann. of North America

Jack R. Buckley, Houston, TX [SE]

Frederick B. Clarke, Benjamin Clarke Assoc., Inc., VA [SE]

Michael Earl Dillon, Dillon Consulting Eng., Inc., CA [SE]

Mike K. Dvors, Federal Aviation Administration, TX [U]

Thomas M. Dunia, Schiltron Eng. Corp., CA [SE]

S. E. Egesdal, Honeywell Inc., MN [M]

Victor Ferrante, U.S. Housing and Urban Development, DC [U]

Richard G. Gwain, Hughes Assoc., Inc., MD [SE]

James R. Hoover, The DuPont Co., DE [M]

Winfred T. Irwin, Irwin Services, PA [M]

Philip R. Jose, U.S. Dept. of Veterans Affairs, NY [U]

Alternates

Ken Adams, Society of the Plastics Industry, DC [M]
(Alt. to J. R. Hoover)

Lee Applegate, Hochiki America, CA [M]
(Alt. to S. E. Egesdal)

Dolbert F. Boring, Jr., American Iron & Steel Inst., OH [M]
(Alt. to R. J. Wills)

Douglas S. Erickson, American Society for Healthcare Engr, IL [U]
(Vot. Alt. to ASHRAE Rep.)

Geraldine Moxey, Dillon Consulting Eng., Inc., CA [SE]
(Alt. to M. E. Dillon)

Gregory E. Harrington, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of this document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on the construction, installation, operation, and maintenance of systems for air conditioning, warm air heating, and ventilating including filters, ducts, and related equipment to protect life and property from fire, smoke, and gases resulting from fire or from conditions having manifestations similar to fire.

1999 Edition
Contents

<table>
<thead>
<tr>
<th>Chapter 1 General</th>
<th>90A–4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Introduction</td>
<td>90A–4</td>
</tr>
<tr>
<td>1-2 Scope</td>
<td>90A–4</td>
</tr>
<tr>
<td>1-3 Purpose</td>
<td>90A–4</td>
</tr>
<tr>
<td>1-4 Smoke Control</td>
<td>90A–4</td>
</tr>
<tr>
<td>1-5 Maintenance</td>
<td>90A–4</td>
</tr>
<tr>
<td>1-6 Definitions</td>
<td>90A–4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2 HVAC Systems</th>
<th>90A–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 General Requirements for Equipment</td>
<td>90A–5</td>
</tr>
<tr>
<td>2-2 System Components</td>
<td>90A–5</td>
</tr>
<tr>
<td>2-3 Air Distribution</td>
<td>90A–6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3 Integration of a Ventilation and Air-Conditioning System(s) with Building Construction</th>
<th>90A–9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1 Air-Handling Equipment Rooms</td>
<td>90A–9</td>
</tr>
<tr>
<td>3-2 Building Construction</td>
<td>90A–9</td>
</tr>
<tr>
<td>3-3 Penetrations — Protection of Openings</td>
<td>90A–10</td>
</tr>
<tr>
<td>3-4 Fire Dampers, Smoke Dampers, and Ceiling Dampers</td>
<td>90A–10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4 Controls</th>
<th>90A–11</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1 Wiring</td>
<td>90A–11</td>
</tr>
<tr>
<td>4-2 Manual Control</td>
<td>90A–11</td>
</tr>
<tr>
<td>4-3 Smoke Dampers</td>
<td>90A–11</td>
</tr>
<tr>
<td>4-4 Smoke Detection for Automatic Control</td>
<td>90A–12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5 Acceptance Testing</th>
<th>90A–12</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1 General</td>
<td>90A–12</td>
</tr>
<tr>
<td>5-2 Fire Dampers, Smoke Dampers, and Ceiling Dampers</td>
<td>90A–12</td>
</tr>
<tr>
<td>5-3 Controls and Operating Systems</td>
<td>90A–12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6 Referenced Publications</th>
<th>90A–12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A Explanatory Material</td>
<td>90A–13</td>
</tr>
<tr>
<td>Appendix B Maintenance</td>
<td>90A–16</td>
</tr>
<tr>
<td>Appendix C Referenced Publications</td>
<td>90A–17</td>
</tr>
<tr>
<td>Index</td>
<td>90A–18</td>
</tr>
</tbody>
</table>

1999 Edition
NFPA 90A

Standard for the
Installation of Air-Conditioning and Ventilating Systems

1999 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Appendix A. Information on referenced publications can be found in Chapter 6 and Appendix C.

Chapter 1 General

1-1 Introduction. An air duct system has the potential to convey smoke, hot gases, and flame from area to area and to supply air to aid in combustion in the fire area. For these reasons, fire protection of an air duct system is essential to safety to life and the protection of property. However, an air duct system's fire integrity also enables it to be used as part of a building's fire protection system. (See Section 1-4.)

1-2 Scope. This standard shall apply to all systems for the movement of environmental air in structures that serve the following:

1. Spaces of over 25,000 ft³ (707.9 m³) in volume
2. Buildings of Types III, IV, and V construction over three stories in height, regardless of volume
3. Buildings and spaces not covered by other applicable NFPA standards
4. Occupants or processes not covered by other applicable NFPA standards

1-3 Purpose.

1-3.1 This standard prescribes minimum requirements for safety to life and property from fire. These requirements are intended to accomplish the following:

1. Restrict the spread of smoke through air duct systems within a building or into a building from the outside
2. Restrict the spread of fire through air duct systems from the area of fire origin whether located within the building or outside
3. Maintain the fire-resistive integrity of building components and elements such as floors, partitions, roofs, walls, and floors-or roof-ceiling assemblies affected by the installation of air duct systems
4. Minimize the ignition sources and combustibility of the elements of the air duct systems
5. Permit the air duct systems in a building to be used for the additional purpose of emergency smoke control

1-3.2 Nothing in this standard is intended to prevent the use of new methods or devices, provided that sufficient technical data are submitted to the authority having jurisdiction to demonstrate that the proposed method or device is equivalent in quality, strength, durability, and safety to that prescribed by this standard.

1-3.3 The provisions of this standard are not intended to be applied retroactively. Where a system is being altered, extended, or renovated, the requirements of this standard shall apply only to the work being undertaken.

1-4 Smoke Control.

1-5 Maintenance. (Reserved.)

1-6 Definitions.

Air Cleaner. A device used to reduce or remove airborne solids from heating, ventilating, and air-conditioning systems by electrostatic means.

Air Connector. A conduit for transferring air between an air duct or plenum and an air terminal unit or an air inlet or air outlet.

Air Distribution System. A continuous passageway for the transmission of air that, in addition to air ducts, can include air connectors, air duct fittings, dampers, plenums, fans, and accessory air-handling equipment but that does not include conditioned spaces.

Air Duct. A conduit for conveying air.

Air Duct Covering. A material such as an adhesive, insulation, banding, a coating(s), film, or a jacket used to cover the outside surface of an air duct, fan casing, or duct plenum.

Air Duct Lining. A material such as an adhesive, insulation, a coating(s), or film used to line the inside surface of an air duct, fan casing, or duct plenum.

Air Filter. A device used to reduce or remove airborne solids from heating, ventilating, and air conditioning.

Air Inlet. Any opening through which air is removed from a space and returned to an air distribution system.

Air Outlet. Any opening through which air is delivered to a space from an air distribution system.

Air Terminal Unit. An appliance receiving, conditioning, and delivering air supplied through an air distribution system.

Air Transfer Opening. An opening designed to allow the movement of environmental air between two contiguous spaces.

Approved. Acceptable to the authority having jurisdiction.

Authority Having Jurisdiction. The organization, office, or individual responsible for approving equipment, materials, an installation, or a procedure.

Ceiling Damper. A device installed to limit radiant heat transfer through an air outlet or air inlet opening in the ceiling of a floor- or roof-ceiling assembly having not less than a 1-hour fire resistance rating. Such a device is described in the construction details for some tested floor- or roof-ceiling assemblies.

Combination Fire and Smoke Damper. A device that meets both the fire damper and smoke damper requirements.

Environmental Air. Air that is supplied, returned, recirculated, or exhausted from spaces for the purpose of modifying the existing atmosphere within the building.

Fan. An air moving device that creates a pressure difference causing airflow.

Fire Damper. A device, installed in an air distribution system, that is designed to close automatically upon detection of heat, to interrupt migratory airflow, and to restrict the passage of flame.
Fire Resistance Rating. The time, in minutes or hours, that materials or assemblies have withstood a fire exposure as established in accordance with the test procedures of NFPA 251, Standard Methods of Tests of Fire resistance of Building Construction and Materials.

Flame Spread Index. A number obtained according to NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

Limited-Combustible Material. A building construction material not complying with the definition of noncombustible material that in the form in which it is used, has a potential heat value not exceeding 3500 Btu/lb (8141 kJ/kg) where tested in accordance with NFPA 259, Standard Test Method for Potential Combustion Characteristics of Building Materials, and complies with (a) or (b):

(a) Materials having a structural base of noncombustible material, with a surface not exceeding a thickness of 1/8 in. (3.2 mm), that has a flame spread index not greater than 50, and of such composition that surfaces that would be exposed by cutting through the material on any plane would have neither a flame spread index greater than 25 nor evidence of continued progressive combustion.

(b) Materials, in the form and thickness used, other than as described in (a), having neither a flame spread index greater than 25 nor evidence of continued progressive combustion. Materials subject to increase or decrease in combustibility or flame spread index beyond the limits herein established through the effects of age, moisture, or other atmospheric condition shall be considered combustible.

Listed. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.

Noncombustible Material. A material that, in the form in which it is used and under the conditions anticipated, will not ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat. Materials that are reported as passing ASTM E 136, Standard Test Method for Surface Burning Characteristics of Building Materials, and are listed as passing ASTM E 84, Standard Test Method for Smoke Developed Index.

Plenum. A compartment or chamber to which one or more air ducts are connected and that forms part of the air distribution system.

Shall. Indicates a mandatory requirement.

Should. Indicates a recommendation or that which is advised but not required.

Smoke. The airborne solid and liquid particulates and gases evolved when a material undergoes pyrolysis or combustion, together with the quantity of air that is entrained or otherwise mixed into the mass.

Smoke Barrier. A continuous membrane, either vertical or horizontal, such as a wall, floor, or ceiling assembly, that is designed and constructed to restrict the movement of smoke.
2-2.2.4 Where air filters are flushed with liquid adhesives, the system shall be arranged so that the air cleaner cannot be flushed while the fan is in operation.

2-2.2.5 Combustible adhesive coatings shall be stored in accordance with NFPA 90, Flammable and Combustible Liquids Code.

2-2.3 Fans.

2-2.3.1 Installation. Fans shall be installed in accordance with the applicable NFPA standards and the manufacturer’s instructions. Fans shall be approved for the specific installation.

2-2.3.2 Access. Fans shall be located, arranged, and installed to afford access for inspection and maintenance.

2-2.3.3 Exposed Inlets. Exposed fan inlets shall be protected with metal screens to prevent the entry of paper, trash, and similar foreign materials.

2-2.4 Air-Cooling and Heating Equipment.

2-2.4.1 Installation. Heating and cooling equipment shall be installed in accordance with the applicable NFPA standards and the manufacturer’s instructions. The equipment shall be approved for the specific installation. (See 2-3.3.1.)

2-2.4.2 Materials. Materials used in the manufacturing of fan coil units, self-contained air-conditioning units, furnaces, heat pumps, humidifiers, and all similar equipment shall meet the requirements of 2-3.3.1 and 2-3.3.2.

Exception No. 1: Equipment tested and listed in accordance with UL 1995, Standard for Safety Heating and Cooling Equipment.

Exception No. 2: Unlisted solar energy air distribution system components shall be accompanied by supportive information demonstrating that the components have flame spread and smoke developed indexes that are not in excess of those of the air duct system permitted by this standard.

2-2.4.3 Mechanical Cooling. Mechanical refrigeration used with air duct systems shall be installed in accordance with recognized safety practices. Installations conforming to ANSI/ASHRAE 15, Safety Code for Mechanical Refrigeration, shall be considered to be in compliance with these requirements.

2-2.4.4 Furnaces. Heating furnaces combined with cooling units in the same air duct system shall be installed in accordance with NFPA 31, Standard for the Installation of Oil-Burning Equipment, where oil fired, and NFPA 54, National Fuel Gas Code, where gas fired.

2-2.4.5 Duct Heaters. Where electrical resistance or fuel-burning heaters are installed in air ducts, the air duct coverings and their installation shall comply with the provisions of 2-3.3.5. The installation of electrical duct heaters shall comply with the provisions of NFPA 70, National Electrical Code, Article 424, Part F, “Duct Heaters.”

2-2.4.6 Evaporative Coolers. Combustible evaporation media shall not be used. Exception: Evaporative media meeting the requirements of 2-2.2.2 shall be permitted.

2-2.4.7 Heat Recovery Equipment. Equipment not covered by other provisions of this standard and used for heat transfer or air movement shall be constructed so that all material in the air path meets the requirements of Section 2-2.

2-3 Air Distribution.

2-3.1 Air Ducts.

2-3.1.1 Air ducts shall be permitted to be rigid or flexible and shall be constructed of materials that are reinforced and sealed to satisfy the requirements for the use of the air duct system, such as the supply air system, the return or exhaust air system, and the variable volume/pressure air system.

2-3.1.2 Air ducts shall be constructed of the following materials:

1. Iron, steel, aluminum, copper, concrete, masonry, or clay tile.
2. Class 0 or Class 1 rigid or flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, and installed in conformance with the conditions of listing.

Exception No. 1: Class 0 or Class 1 rigid or flexible air ducts shall not be used as vertical air ducts that are more than two stories in height.

Exception No. 2: Class 0 or Class 1 rigid or flexible air ducts shall not be used for air ducts containing air at temperatures in excess of 250°F (121°C).

3. Where the temperature of the conveyed air does not exceed 125°F (52°C) in normal service, negative pressure exhaust or return air ducts shall be permitted to be constructed of gypsum board having a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50.

Exception: The maximum conveyed air temperature of 125°F (52°C) shall not apply to gypsum board material used for emergency smoke exhaust air ducts.

2-3.1.3 All air duct materials shall be suitable for continuous exposure to the temperature and humidity conditions of the environmental air in the air duct.

2-3.1.4 The materials, thickness, construction, and installation of ducts shall provide structural strength and durability in conformance with recognized good practice. Air ducts shall be considered to be in compliance with this requirement where constructed and installed in accordance with the following:

1. *SMACNA Fibrous Glass Duct Construction Standard; SMACNA HVAC Duct Construction Standards — Metal and Fiberglass; or SMACNA HVAC Air Duct Leakage Test Manual, whichever is applicable*.

2. ASHRAE Handbook — HVAC Systems and Equipment

2-3.1.5 Where no standard exists for the construction of air ducts, they shall be constructed to withstand both the positive and negative pressures of the system.

2-3.2 Air Connectors.

2-3.2.1 Air connectors shall conform to the requirements for Class 0 or Class 1 connectors when tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors.

2-3.2.2 Class 0 or Class 1 air connectors shall not be used for ducts containing air at temperatures in excess of 250°F (121°C).

2-3.2.3 Air connector runs shall not exceed 14 ft (4.27 m) in length.
2.3.1.1.4 Air connectors shall not pass through any wall, partition, or enclosure of a vertical shaft that is required to have a fire resistance rating of 1 hour or more.

2.3.1.2.3 Air connectors shall not pass through floors.

2.3.2.2 Vibration isolation connectors in duct systems shall be made of an approved flame-retardant fabric or shall consist of sleeve joints with packing of approved material, each having a maximum flame spread index of 25 and a maximum smoke developed index of 50. Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50. Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 2-2.4.2.)

2.3.2.3 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been listed and tested in accordance with UL 181A, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors, or UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors, and used in accordance with the conditions of their listings.

Exception No. 1: This requirement shall not apply to air duct with-throof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

Exception No. 2: Smoke detectors required by 4-4.2.

2.3.2.5 Air duct, panel, and pleated coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 250°F (121°C).

2.3.3.3 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

2.3.3.4 Air duct coverings shall be interrupted at fire dampers or prevent the use of any service opening.

2.3.3.5 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

2.3.4.2 Air Duct Access and Inspection.

2.3.4.3 A service opening shall be provided in approved air ducts adjacent to each fire damper, smoke damper, and smoke detector. The opening shall be large enough to permit maintenance and testing of the device.

2.3.4.2 Service openings shall be identified with letters having a minimum height of 1/2 in. (1.27 cm) to indicate the location of the fire protection device(s) within.

2.3.4.5 Horizontal air ducts and plenums shall be provided with service openings to facilitate the removal of accumulations of dust and combustible materials. Service openings shall be located at approximately 25 ft (6.1 m) intervals along the air duct and at the base of each vertical riser.

Exception No. 1: Removable air outlet or air inlet devices of adequate size shall be permitted in lieu of service openings.

Exception No. 2: Service openings shall not be required in supply ducts where the supply air has previously passed through an air filter, an air cleaner, or a water sprayer.

Exception No. 3: Service openings shall not be required when all the following conditions exist:

(a) The occupancy has no process that produces combustible material such as dust, lint, or gravel chutes. Such occupancies include banks, office buildings, churches, banks, and health care facilities (but not kitchens, laundries, and manufacturing portions of such facilities).

(b) The air inlets are at least 7 ft (2.13 m) above the floor or are protected by corrosion-resistant metal screens of at least 14 mesh (0.07 in.) that are installed at the inlets so that they cannot draw papers, refuse, or other combustible solids into the return air duct.

(c) The minimum design velocity in the return duct for the particular occupancy is 1000 ft/min (5.08 m/sec).

2.3.4.4 Inspection windows shall be permitted in air ducts provided they are glazed with wired glass. However, service openings shall be provided as required in 2.3.4.1.

2.3.4.5 Openings in walls or ceilings shall be provided so that service openings in air ducts are accessible for maintenance and inspection needs.

2.3.4.6 Where a service opening is necessary in an air duct located above the ceiling of a floor or roof-ceiling assembly that has been tested and assigned a fire resistance rating in accordance with NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials, access shall be provided in the ceiling and shall be designed and installed so that it does not reduce the fire resistance rating of the assembly.

2.3.5 Air Duct Integrity.

2.3.5.1 Air ducts shall be located where they are not subject to damage or rupture, or they shall be protected to maintain their integrity.

2.3.5.2 Where an air duct is located outdoors, the air duct, together with its covering or lining, shall be protected from harmful elements.

2.3.5.3 Where electrical, fossil fuel, or solar energy collection heat sources are installed in air ducts, the installation shall avoid the creation of a fire hazard. Air ducts rated as Class I in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, air duct coverings and linings shall be interrupted at the immediate area of operation of such heat sources in order to meet the clearances specified as a condition of the equipment listing.

Exception No. 1: Appliances listed for zero clearance from combustibles when installed in accordance with the conditions of their listings.

Exception No. 2: Insulation specifically rated for the maximum temperature that reasonably can be anticipated on the duct surface shall be permitted to be installed at the immediate area of operation of such appliances.

1993 Edition
2-3.6 Air Outlets.

2-3.6.1 General. Air supplied to any space shall not contain flammable vapors, fumes, or dust in quantities and concentra-
tions that would introduce a hazardous condition.

2-3.6.2 Construction of Air Outlets. Air outlets shall be con-
structed of noncombustible material or a material that has a
maximum flame spread index of 25 and a maximum smoke
developed index of 50.

2-3.6.3 Location of Air Outlets.

2-3.6.3.1 Air outlets shall be located at least 3 in. (7.6 cm) above
the floor.
Exception: Where provisions have been made to prevent dust and dust ac-
cumulations from entering the system.

2-3.6.3.2 Where located less than 7 ft (2.13 m) above
the floor, outlet openings shall be protected by a grille or screen
having openings through which a \(\frac{1}{2} \) in. (1.27-cm) sphere
cannot pass.

2-3.7 Air Inlets — Return or Exhaust or Return and Exhaust.

2-3.7.1 General. Air shall not be recirculated from any space
in which flammable vapors, fumes, or dust is present in quan-
tities and concentrations that would introduce a hazardous
condition into the return air system.

2-3.7.2 Construction of Air Inlets. Air inlets shall be con-
structed of noncombustible material or a material that has a
maximum flame spread index of 25 and a maximum smoke
developed index of 50.

2-3.7.3 Location of Air Inlets.

2-3.7.3.1 Air inlets shall be located at least 3 in. (7.6 cm) above
the floor.
Exception: Where provisions have been made to prevent dust and dust ac-
cumulations from entering the system.

2-3.7.3.2 Where located less than 7 ft (2.13 m) above
the floor, inlet openings shall be protected by a grille or screen
having openings through which a \(\frac{1}{2} \) in. (1.27-cm) sphere
cannot pass.

2-3.8 Fire Dampers. Approved fire dampers shall be pro-
vided as required in Chapter 3 and installed in conformance
with the conditions of their listings.

2-3.9 Smoke Dampers.

2-3.9.1 Approved smoke dampers shall be provided as
required in Chapter 3 and installed in conformance with the
conditions of their listings.

2-3.9.2 Smoke dampers shall be installed in systems with a capa-
city greater than 15,000 ft\(^3\)/min (7060 L/sec) to isolate the air-
handling equipment, including filters, from the remainder of
the system in order to restrict the circulation of smoke.

Exception No. 1: Where the air-handling unit is located on the floor that it serves and serves only that floor.

Exception No. 2: Where the air-handling unit is located on the roof and serves only the floor immediately below the roof.

2-3.10 Plenums.

2-3.10.1 Storage. Plenums shall not be used for occupancy or
storage.
Chapter 3 Integration of a Ventilation and Air-Conditioning System(s) with Building Construction

3-1 Air-Handling Equipment Rooms.

3-1.1 General. Air-handling equipment rooms generally fall into the following three categories:

(1) Those used as air plenums (usually return air)
(2) Those with air ducts that open directly into a shaft
(3) Other air-handling unit rooms

3-1.2 Air-Handling Equipment Rooms Used as Plenum Space. Air-handling unit rooms used as plenums for supply or return air shall comply with 2-3.10.5.

3-1.3 Air-Handling Equipment Rooms that Have Air Ducts that Open Directly into a Shaft. Air-handling equipment rooms, including the protection of openings, shall be separated from shafts by construction having a fire resistance rating not less than that required for the shaft by 3-3.4.

3-1.4 Other Spaces Housing Air-Handling Units. Other spaces housing air-handling units shall meet the requirements of the building code of the authority having jurisdiction.

3-2 Building Construction.

3-2.1 Air Duct Clearance. The clearance from metal air ducts to assemblies constructed of combustible materials, including plaster on wood lath, shall be not less than 1/2 in. (1.27 cm), or the combustible material shall be protected with minimum 1/4 in. (0.635-cm) approved insulting material. The integrity of the firestopping and smokestoppping shall be maintained.

3-2.2 Structural Members. The installation of air ducts, including the hangers, shall not reduce the fire resistance rating of structural members.

3-2.3 Ceiling Assemblies. Where the installation of the hang- ers for the components of an air duct system penetrates an existing ceiling of a fire-resistant floor or roof-ceiling assembly and necessitates removal of a portion of that ceiling, the replacement material shall be identical to or approved as equivalent to that which was removed.
9-3 Penetrations — Protection of Openings.

5.3.1 Fire-Rated Walls and Partitions.

5.3.1.1* Approved fire dampers shall be provided where air ducts penetrate or terminate at openings in walls or partitions required to have a fire resistance rating of 2 hours or more.

Exception:* Fire dampers shall not be required where other openings through the wall are not required to be protected.

5.3.1.2 Approved fire dampers shall be provided in all air transfer openings in partitions that are required to have a fire resistance rating of 1 hour where such openings are required to be protected.

5.3.2 Floors Required to Have a Fire Resistance Rating. Where air ducts extend through only one floor and serve only two adjacent stories, the air ducts shall be enclosed (see 5-3.1.1) or fire dampers shall be installed at each point where the floor is penetrated.

Exception: Air ducts serving air-conditioning terminal devices on the floor above, provided a fire test conducted in accordance with NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials, determines that the fire resistance rating of the floor is maintained.

5.3.3* Floor- or Roof-Ceiling Assemblies Having a Fire Resistance Rating. Where air ducts and openings for air ducts are used in a floor- or roof-ceiling assembly that is required to have a fire resistance rating, all the materials and the construction of the assembly, including the air duct materials and the size and protection of the openings, shall conform with the design of the fire-resistive assembly, as tested in accordance with NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials. (Where dampers are required, see 5-4.4.)

5.3.4 Shafts.

5.3.4.1* Air ducts that pass through the floors of buildings that require the protection of vertical openings shall be enclosed with partitions or walls constructed of materials as permitted by the building code of the authority having jurisdiction. The enclosure shall have a minimum fire resistance rating (based on possible fire exposure from either side of the partition or wall) of 1 hour where such air ducts are located in a building less than four stories in height and a minimum rating of 2 hours where such air ducts are located in a building four stories or more in height.

Exception: Where an air duct penetrates only one floor, or one floor and an air-handling equipment penthouse floor, and the air duct contains a fire damper located where the duct penetrates the floor, an air duct enclosure shall not be required.

5.3.4.2 A fire-resistive enclosure used as an air duct shall conform with 2-3.1 and 3-3.4.1. Gypsum board systems shall be constructed in accordance with the Gypsum Association Fire Resistance Design Manual.

5.3.4.3 Shafts that constitute air ducts or that enclose air ducts used for the movement of environmental air shall not enclose the following:

1. Exhaust ducts used for the removal of smoke- and grease-laden vapors from cooking equipment
2. Ducts used for the removal of flammable vapors
3. Ducts used for moving, conveying, or transporting stock, vapor, or dust
4. Ducts used for the removal of nonflammable corrosive fumes and vapors
5. Refuse and linen chutes
6. Piping
7. Combustible storage

Exception: Noncombustible piping conveying water or other nonhazardous or nontoxic materials.

5.3.4.4 Fire dampers shall be installed at each direct or ducted opening into or out of enclosures required by 5-3.4.1.

Exception No. 1: Where an air duct system serving only one story is used only for exhaust of air to the outside and is contained within its own dedicated shaft.

Exception No. 2: Where branch ducts connect to enclosed exhaust risers meeting the requirements of 3-3.4.1 or 3-3.4.2 in which the airflow moves upward and sized subducts at least 22 in. (56 cm) in length are carried up inside the riser from each inlet and the riser is appropriately sized to accommodate the flow restriction created by the subduct.

5.3.5 Smoke Barriers.

5.3.5.1 Smoke dampers shall be installed at or adjacent to the point where air ducts pass through required smoke barriers, but in no case shall a smoke damper be installed more than 2 ft (0.6 m) from the barrier or after the first air duct inlet or outlet, whichever is closer to the smoke barrier.

Exception No. 1: Smoke dampers shall not be required on air systems other than where necessary for the proper function of that system where the system is designed specifically to:

(a) Function as an engineered smoke-control system, including the provision of continuous air movement with the air-handling system
(b) Provide air to other areas of the building during a fire emergency
(c) Provide pressure differentials during a fire emergency

Exception No. 2: Smoke dampers shall not be required to be located within a specified distance of a smoke barrier where isolation smoke dampers are used in air-handling equipment. (See 2-3.9.2.)

Exception No. 3: Smoke dampers shall not be required where the air inlet or outlet openings in ducts are limited to a single smoke compartment.

Exception No. 4: Smoke dampers shall not be required in ducts where the air continues to move and the air-handling system is arranged to prevent recirculation of exhaust or return air under fire emergency conditions.

Exception No. 5: Smoke dampers shall not be required in health care occupancies where exempted by NFPA 101®. Life Safety Code®.

5.3.5.2 Where penetration of a smoke barrier is required to be provided with a fire damper, a combination fire and smoke damper equipped and arranged to be both smoke responsive and heat responsive shall be permitted.

5.4 Fire Dampers, Smoke Dampers, and Ceiling Dampers.

5.4.1 Fire dampers used for the protection of openings in walls, partitions, or floors with fire resistance ratings of less than 3 hours shall have a 1/2-hour fire protection rating in accordance with UL 555, Standard for Safety Fire Dampers.
3.4.2 Fire dampers used for the protection of openings in walls, partitions, or floors having a fire resistance rating of 3 hours or more shall have a 5-hour fire protection rating in accordance with UL 555, Standard for Safety Fire Dampers.

3.4.3* Smoke dampers used for the protection of openings in smoke barriers or in engineered smoke-control systems shall be classified in accordance with UL 555S, Standard for Safety Smoke Dampers.

3.4.4 Ceiling dampers or other methods of protecting openings in rated floor- or roof-ceiling assemblies shall comply with the construction details of the tested floor- or roof-ceiling assembly or with listed ceiling air diffusers or listed ceiling dampers. Ceiling dampers shall be tested in accordance with UL 555C, Standard for Safety Ceiling Dampers.

3.4.5 Damper Closure.

3.4.5.1 All fire dampers and ceiling dampers shall close automatically, and they shall remain closed upon the operation of a listed fusible link or other approved heat-responsive device located where readily affected by an abnormal rise of temperature in the air duct.

3.4.5.2 Fusible links shall have a temperature rating approximately 50°F (28°C) above the maximum temperature that normally is encountered when the system is in operation or shutdown, but not less than 160°F (71°C). Exception: Where fusible links are located within air ducts that are part of an engineered smoke-controlled system, fusible links or other approved heat-responsive devices shall have a temperature rating approximately 50°F (28°C) above the maximum smoke-controlled system designed operating temperature but shall not exceed the UL 555S, Standard for Safety Smoke Dampers, degradation test temperature rating of the combination fire and smoke damper or a maximum of 350°F (177°C).

3.4.5.3* A provision for remote opening of combination fire and smoke dampers or a maximum of 350°F (177°C) shall be permitted. Such dampers shall have provisions that allow them to reclose automatically upon reaching the damper degradation test temperature in accordance with UL 555S, Standard for Safety Smoke Dampers.

3.4.5.4* Damper shall close against the maximum calculated airflow of that portion of the air duct system in which they are installed. Fire dampers shall be tested in accordance with UL 555, Standard for Safety Fire Dampers and smoke dampers shall be tested in accordance with UL 555S, Standard for Safety Smoke Dampers.

Exception: Where fusible links are located within air ducts that are part of an engineered smoke-controlled system or in engineered smoke-control systems, fusible links shall have a temperature rating approximately 50°F (28°C) above the maximum smoke-control system designed operating temperature but shall not exceed the UL 555S, Standard for Safety Smoke Dampers, degradation test temperature rating of the combination fire and smoke damper or a maximum of 350°F (177°C).

3.4.5.5 A provision for remote opening of combination fire and smoke dampers, ceiling dampers, and fire protection means of a similar nature required by this standard shall be shown on the drawings of the air duct systems.

3.4.6* Fire dampers, including their sleeves, smoke dampers, and ceiling dampers shall be installed in accordance with the conditions of their listings and the manufacturer’s installation instructions.

3.4.6.3 The thickness of sleeves for fire dampers shall not be less than that associated with the conditions of rating required by Section 3-4.

\[
\begin{array}{ccc}
\text{Air Duct Diameter or Maximum Width} & \text{Minimum Sleeve Thickness} \\
\text{in.} & \text{mm} & \text{in. gauge} \\
12 \text{ or less} & 305 & 0.018 & 26 \\
13–50 & 330–762 & 0.024 & 24 \\
31–54 & 787–1372 & 0.030 & 22 \\
55–84 & 1397–2134 & 0.036 & 20 \\
85 \text{ or more} & 2359 & 0.047 & 18 \\
\end{array}
\]

Table 3-4.6.3 Minimum Sleeve Thickness Permitted in Accordance with UL 555

3.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 1-in. (25.4-mm) clearance on all sides

Exception: Combinations for fire dampers, smoke dampers, ceiling dampers, and fire protection means of a similar nature required by this standard shall be arranged to close automatically when the system is not in operation.

Chapter 4 Controls

4-1 Wiring. The installation of electrical wiring and equipment associated with the operation and control of air-conditioning and ventilating systems shall be in accordance with NFPA 70, National Electrical Code.

4-2 Manual Control. Each air distribution system shall be provided with at least one manually operable means for stopping the operation of the supply, return, and exhaust fan(s) in an emergency. The means of manual operation shall be located at an approved location.

4-3* Smoke Dampers.

4-3.1 Smoke dampers shall be controlled by an automatic alarm initiating device. Smoke dampers shall be permitted to be positioned manually from a command station.

4-3.2 Smoke dampers installed to isolate the air-handling system in accordance with 2-3.9.2 shall be arranged to close automatically when the system is not in operation.
4-3.3 Smoke dampers installed in smoke barriers shall be permitted to remain open during fan shutdown, provided their associated controlling damper actuators and smoke detectors remain operational.

4-4* Smoke Detection for Automatic Control.

4-4.1 Testing. All automatic shutdown devices shall be tested at least annually.

4-4.2 Location. Smoke detectors listed for use in air distribution systems shall be located as follows:

(1) Downstream of the air filters and ahead of any branch connections in air supply systems having a capacity greater than 2800 ft³/min (944 L/sec)

(2) At each story prior to the connection to a common return and prior to any recirculation or fresh air inlet connection in air return systems having a capacity greater than 15,000 ft³/min (7590 L/sec) and serving more than one story

Exception No. 1: Return system smoke detectors shall not be required where the entire space served by the air distribution system is protected by a system of area smoke detectors.

Exception No. 2: Fan units whose sole function is to remove air from the inside of the building to the outside of the building.

5-1.1 Acceptance test shall be performed to determine that the system operates under the requirements of this standard.

5-1.2 Records shall be maintained on acceptance test results and shall be available for inspection.

5-2 Fire Dampers, Smoke Dampers, and Ceiling Dampers. All fire dampers, smoke dampers, and ceiling dampers shall be operated prior to the occupancy of a building to determine that they function in accordance with the requirements of this standard.

5-3 Controls and Operating Systems.

5-3.1 Controls relating to fan shutdown and automatic damper operation shall be tested for compliance with the requirements of this standard.

5-3.2 Acceptance tests of fire protection devices in air-conditioning and ventilating systems shall, as far as practicable, be performed under normal operating conditions. Some portions of control or alarm systems are permitted to have standby power or other emergency modes of operation. The tests shall be performed to determine that the system operates under these conditions as well as normal conditions.

Chapter 6 Referenced Publications

6-1 The following documents or portions thereof are referenced within this standard as mandatory requirements and shall be considered part of the requirements of this standard.

The edition indicated for each referenced mandatory document is the current edition as of the date of the NFPA issuance of this standard. Some of these mandatory documents might also be referenced in this standard for specific informational purposes and, therefore, are also listed in Appendix C.

6-1.1 NFPA Publications.

6-1.2 Other Publications.

Chapter 5 Acceptance Testing

5-1 General.

5-1.1* An acceptance test shall be performed to determine that the protective measures required in this standard function when needed in order to restrict the spread of fire and smoke.

1999 Edition

1999 Edition
APPENDIX A 90A–13

Appendix A Explanatory Material

Appendix A is not a part of the requirements of this NFPA document but is included for informational purposes only. This appendix contains explanatory material, numbered to correspond with the applicable text paragraphs.

A-1.2(1) For the purpose of this standard, a space is considered as an entire building or a portion thereof separated from all other portions of the building by fire resistance rated construction and whose environmental air does not mix with that of any other space. (For spaces not exceeding 25,000 ft3 (707.9 m3) in volume, see NFPA 90B, Standard for the Installation of Warm Air Heating and Air-Conditioning Systems.)

A-1.2(2) For construction types, see NFPA 220, Standard on Types of Building Construction.

A-1.2(3) Such applicable standards include, but are not limited to, NFPA 70, National Electrical Code (see Ventilation in index), and NFPA 90B, Standard for the Installation of Warm Air Heating and Air-Conditioning Systems.

A-1.4 Guidance for the design of smoke-control systems is provided in NFPA 92A, Recommended Practice for Smoke-Controlling Systems.

A-1.5 Pertinent information on maintenance is provided in Appendix B.

A-1.6 Air Connector. Some such devices are listed in UL Gas and Oil Equipment Directory under the category “Connectors (ALNR).” These devices, since they do not meet all the requirements for air ducts, have limitations on their use, length, and location. (For limitations on the use of air connectors, see 2.3.2.)

A-1.6 Air Inlet. For further discussion of various types of air inlet devices, see ASHRAE Handbook — Fundamentals, Chapter 32, “Space Air Diffusion.”

A-1.6 Air Outlet. For further discussion of various types of air outlet devices, see ASHRAE Handbook — Fundamentals, Chapter 32, “Space Air Diffusion.”

A-1.6 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials, nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A-1.6 Authority Having Jurisdiction. The phrase “authority having jurisdiction” is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal, chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representing may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

1999 Edition
A-16 Ceiling Damper. Some such devices are listed in UL Fire Resistance Directory under the category of "Ceiling Damper (CABS)."

A-16 Fire Damper. Some such devices are listed in UL Building Materials Directory under the category of "Fire Dampers (ALBD)."

A-16 Fire Resistance Rating. Some such assemblies are listed in UL Fire Resistance Directory under the categories of "Floors," "Roofs," and "Walls and Partitions."

A-16 Flame Spread Index. Flame spread indexes for some materials are listed in UL Building Materials Directory. A-16 Listed. The means for identifying listed equipment may vary for each organization concerned with product evaluation. Some such assemblies do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A-16 Smoke Barrier. See also NFPA 101, Life Safety Code, Chapter 6, for additional guidance.

A-16 Smoke Damper. Smoke dampers are subjected to various pressure differentials, are exposed to elevated temperatures, and can be required to open or close against mechanically induced airflow. Some such devices are listed in UL Building Materials Directory under the category "Leakage Rated Dampers (OOYZ)."

A-16 Smoke Detector. See NFPA 72, National Fire Alarm Code.

A-16 Smoke Developed Index. Smoke developed indexes for some materials are listed in UL Building Materials Directory.

A-22.2.2 For care and maintenance, see Appendix B.

A-23.1.4 Fire dampers and smoke dampers. If feasible, the underside of the duct should be used rather than a side door.

Many fire dampers and smoke dampers are preloaded with powerful springs that force the damper to shut. These dampers need to be opened against these springs, which could necessitate the ability to get two arms into the duct.

A-23.1.11 This requirement is not intended to prohibit the use of mechanical ventilation for corridors or prohibit the use of a corridor as a source of makeup air through normal leakage around doors due to pressure differentials created by exhaust fans in kitchens and bathrooms. This requirement is not intended to prohibit incidental air movement between rooms and corridors because of pressure differentials in special institutional occupancies. In such cases, the direction of airflow is not the important issue. For the purpose of fire protection, the important criterion is that the air transfer be incidental.

A-2.5.12 For further information, see NFPA 92A, Recommended Practice for Smoke-Control System, or NFPA 92B, Guide for Smoke Management Systems in Mall, Atria, and Large Areas.

A-3.5 For examples of the application of the penetration protection requirements, see Figure A-3.5.

A-3.5.1.1 Duct penetrations of fire walls should be avoided.

A-3.5.1 Exception. Fire dampers are recommended in order to isolate specific hazards.

A-3.5.3 For information on designs of fire-resistive assemblies incorporating air-handling components, see UL Fire Resistance Directory, "Floor-Ceiling Designs" or "Roof-Ceiling Designs."

A-3.5.5.1 Exception No. 5. For examples of exempted smoke dampers, see NFPA 101, Life Safety Code, 12.5.7.5, Exception No. 2, and 13.5.7.5, Exception No. 2.

A-3.4.3 The designer should specify the leakage class, maximum pressure, maximum velocity, installation mode (horizontal or vertical), and degradation test temperature of the damper.

A-3.4.5.2 Exception. The exception to this paragraph in earlier editions applied to fire dampers due to the fact that UL 555S, Standard for Safety Smoke Dampers, which tested combination dampers, was not available. Fire dampers in accordance with UL 555, Standard for Safety Fire Dampers, are listed with maximum 286°F (141°C) links. It is recognized that, in some unusual cases, an engineered smoke-control system can make higher temperature links desirable for proper operation. This arrangement necessitates a case by case consideration and concurrence with the authority having jurisdiction.

A-3.5.4.4 On closure of certain smoke dampers in smoke-control systems, the total system flow decreases, but the duct velocity at open fire dampers can be as high as roughly 600 percent of the initial duct design velocity. The dynamic airflow and pressure rating of the damper must be adequate for the damper to close under airflow at the damper’s closure pressure. The damper face velocity and closure pressure can be approximated by calculation. The calculated values must be specified because UL labels dynamic fire dampers at 1000 ft/min (3 m/sec) increments starting at 2000 ft/min (10 m/sec).

A-3.4.6.2 Fire dampers are of no fire protection value unless they remain in place in the protected opening in the event that the ductwork collapses during a fire. To accomplish this, ductwork should not be continuous through a partition opening but instead should connect on each side of the partition to a damper installed in a sleeve or frame secured by perimeter-mounting angles on both sides of the opening, or be installed per the listing of the device. For specific details regarding sleeve thickness, perimeter angle dimensions, size and frequency of fasteners, clearance for expansion, duct-sleeve connections, and fire damper access doors, the manufacturer’s installation instructions and MMACNA Fire, Smoke and Radiation Damper Installation Guide for HVAC Systems, should be referenced.
Figure A-3 Application of penetration requirements.

Notes:
- Return/Exhaust duct requirements are similar: SD = Smoke damper, FD = Fire damper
- ... = Space identification
- Note: Five different ceiling assemblies are specified:
 - AC: Air conditioner
 - BS: Box sash
 - TI: Ceiling tile
 - AC: Air conditioner
 - SD: Smoke damper
 - FD: Fire damper

Protection at these penetrations needs to conform to the rated roof-ceiling assembly, see 3-3.3.
A-4.5 The dampers should close as quickly as practicable, subject to requirements of the system fan and air duct characteristics. The designer should evaluate whether the smoke dampers normally should be open or closed and should consider the fail-safe position of the dampers during an event such as a power failure.

A-4.5.3 Although permitted to remain open during fan shutdown, smoke dampers and combination fire and smoke dampers installed in smoke barriers should be arranged to close automatically when the system is ready for a fire emergency. The access openings required in 2-3.4 should be determined to be needed, see NFPA 92A, Recommended Practice for Smoke Control Systems.

A-4.4 The use of smoke detectors in relationship to HVAC systems and high air movement areas and the details regarding their optimum installation are covered in NFPA 72, National Fire Alarm Code, 5-3.6.6.

Protection provided by the installation of smoke detectors and related requirements is intended to prevent the distribution of smoke through the supply air duct system and, preferably, to exhaust a significant quantity of smoke to the outside. Neither function, however, guarantees either the early detection of fire or the detection of smoke concentrations prior to dangerous smoke conditions where smoke movement is other than through the supply air system.

Where smoke-control protection for a facility is determined to be needed, see NFPA 92A, Recommended Practice for Smoke Control Systems. A-4.4.2 The summation of the capacities of individual supply-air fans should be made where such fans are connected to a common supply air duct system (i.e., all fans connected to a common air duct supply system should be considered as constituting a single system with respect to the applicability of the Chapter 4 provisions that are dependent on system capacity).

A-4.4.3 Where automatic water sprinklers are provided and zoned to coordinate with the HVAC zones, their water flow switches should initiate devices for the functions described in Chapter 4.

Sprinklers are often tested weekly. Where it is desirable to prevent the accompanying automatic shutdown of the fan system(s) referred to in 4.4.2, a means can be permitted to be used to avoid such shutdowns temporarily, provided one of the following occurs:

1. A trouble signal is sustained in the sprinkler supervisory system until the automatic shutdown provision is restored.
2. The automatic shutdown provision is restored at the end of the time period necessary to test the sprinkler system, its alarms, and related elements.

A-5.3.1 Many of the fire protection measures required in this standard are passive and only function in emergencies. Therefore, acceptance testing needs to be performed so that all parts of air-conditioning systems are ready for a fire emergency. The access openings required in 2-3.4 should be checked for proper location, function, and size during the acceptance testing.

Maintenance recommendations, including cleaning, repairing, and periodic testing, are provided in Appendix B.

A-5.3.1 Generally, tests can be included with acceptance testing of the air-conditioning controls or fire alarm systems.
B-4 Inspection and Cleaning of Ducts.

B-4.1 Inspections to determine the amount of dust and waste materials in the ducts (both discharge and return) should be made quarterly. However, if, after several inspections, such frequent inspection is determined to be unnecessary, the interval between inspections can be permitted to be adjusted to suit the conditions.

B-4.2 Cleaning should be undertaken whenever an inspection indicates the need.

B-4.3 Cooling and heating coils should be cleaned, if necessary, at the time ducts are cleaned. Thorough cleaning of ducts can require scraping, brushing, or other positive means. Vacuum cleaning may not remove dust of an oily or sticky nature or heavy accumulations in the elbows or seams. The amount and kind of dust and dirt depends greatly on the occupancy and the arrangement of the duct system. Additional access doors or panels could be needed for a complete cleaning of duct systems.

B-5 Inspection and Cleaning of Plenums.

B-5.1 Apparatus-carrying and air-handling unit plenums should be inspected monthly. However, if, after several inspections, such frequent inspection is determined to be unnecessary, the interval between inspections can be adjusted to suit the conditions.

B-5.2 Ceiling cavity, raised floor, and duct distribution plenums should be inspected in a manner similar to that of ducts, beginning with quarterly inspections and adjusting the frequency to suit dirt buildup conditions.

B-5.3 Cleaning should be undertaken whenever an inspection indicates the need, especially in common plenums serving between inspections can be permitted to be adjusted.

B-6 Repair Work. Extreme caution should be exercised in the use of open flames or spark-emitting devices inside ducts or plenum chambers or near air intakes.

B-7 Outside Air Intakes.

B-7.1 Conditions outside the outside air intake should be examined at the time ducts are inspected. Items to be noted include the following:

1. Accumulations of combustible material near the intake
2. The presence of buildings or structures that could present an exposure to the intake, allowing smoke and fire to be drawn in
3. The operating condition of any automatic damper designed to protect the opening against exposure fire

B-7.2 Where accumulations of combustible material are noted, they should be removed immediately and arrangements made to avoid such accumulations. Inspections should thereafter be made more frequently. If newly erected exposures are noticed, consideration should be given to the protection at the intake to ensure that it is adequate. (See 2.1.1.)

B-8 Fans and Fan Motors.

B-8.1 Fans and fan motors should be inspected at least quarterly and cleaned and lubricated when necessary. Care should be exercised in lubricating fans to avoid allowing lubricant to run onto the fan blades. Fans also should be checked for alignment and checked to see that they are running freely.

B-8.2 The alignment of fan belt drives should be checked, since improper alignment can cause motor overheating as well as premature belt failure.

B-9 Controls. Fan controls should be examined and activated at least annually to ensure that they are in operable condition.

Appendix C Referenced Publications

C-1 The following documents or portions thereof are referenced within this standard for informational purposes only and are thus not considered part of the requirements of this standard unless otherwise stated in Chapter 6. The edition indicated here for each reference is the current edition as of the date of the NFPA issuance of this standard.

C-1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9301, Quincy, MA 02269-9301.

C-1.2 Other Publications.

C-1.2.2 NADMA Publications. North American Duct Manufacturers Association, 44 Canal Center Plaza, Suite 310, Alexandria, VA 22314.

C-1.2.3 SMACNA Publication. Sheet Metal and Air-Conditioning Contractors’ National Assn., Inc., 4201 Lafayette Center Drive, Chantilly, VA 22021-1209.

C-1.2.4 UL Publications. Underwriters Laboratories Inc., 335 Plengiston Road, Northbrook, IL 60062.

1999 Edition
Index

AC=A

Acceptance testing Chap. 5, A-5

Access 2-3.4, A-2-3.4.1, A-5-1.1

Equipment 2-4.1, A-2-3.3.2

Adhesives 2-2.3 to 2-2.5, 2-3.5.1, B-5.1, B-5.4

Air, environmental (definition) 1-6

Air cleaners 2-2.2

Definition 1-6

Air connectors 2-3.5.2

Definition 1-6, A-1-6

Air distribution systems 2-3.10.1, see also Air ducts; Dampers; Fans; Plenums

Definition 1-6

Manual controls 4-2.1.5, A-4-2.1.5

Access 2-3.4, A-2-3.4.1, A-5-1.1

Cleaning 2-3.5.1

Clearance 2-3.5.1

Construction 2-3.1, 2-3.3

Definition 1-6

Enclosures 2-3.10.2, 2-3.5.2

Heaters in 2-3.4, 2-3.5.3

Inspection 2-3.1, 2-3.4.1, A-2-3.4.1

Installation 2-3.1, A-2-3.5.3

Materials 2-5.1 to 2-3.5.2

Mechanical cooling used with 2-2.3.3

Opening into shaft 2-3.11.1

Protection 2-3.5.3

Shafts 2-3.5.4

Air duct coverings 2-3.5.3 to 2-3.5.5, 2-3.5.3, 2-3.5.5, 2-3.10.5

Definition 1-6

Air duct distribution plenums 2-3.5.3, 2-3.5.5

Air duct linings 2-3.5.3, 2-3.5.3.1 to 2-3.5.3.4, 2-3.5.4, 2-3.5.5

Definition 1-6

Air duct systems 2-3.5.3, 2-3.5.3.1 to 2-3.5.3.4, 2-3.5.4, 2-3.5.5

Fire protection 1-6

Furnaces 2-3.4.1

Installation 2-3.5.2

Materials 2-5.1 to 2-3.5.2

Mechanical cooling used with 2-2.3.3

Opening into shaft 2-3.11.1

Protection 2-3.5.3

Shafts 2-3.5.4

Air intakes, outside 2-3.10.3, B-5.2

Air intake openings (definition) 1-6

Air conditioning systems 2-3.10.3, B-5.2

Integration with building construction 2-3.7

Controls 2-3.10.4

Air-handling equipment rooms 2-3.10.4, B-5.1

Alarm initiating devices 2-3.10.5, B-5.1

Apparatus costing plenums 2-3.10.6, B-5.1

Apparatuses 2-3.5.5

1999 Edition

Approved (definition) 1-6, A-1-6

Authority having jurisdiction (definition) 1-6, A-1-6

Barriers, smoke see Smoke barriers

Building construction, integration of ventilation and air-conditioning systems with Chap. 5, A-5

Combination fire and smoke dampers 2-3.5.2, 2-3.5.2

Definition 1-6

Construction 2-3.1, 2-3.3

Integration of ventilation and air-conditioning systems in Chap. 5, A-5

Controls Chap. 4, A-4

Acceptance tests 5-3, A-5-3.1

Maintenance B-9

Coolers, evaporative 2-3.4.6

Cooling, mechanical 2-3.4.5

Cooling equipment 2-3.4

Corridor air systems 2-3.11, A-2-3.11.1

Coverings, air duct see Air duct coverings

Dampers see also Ceiling dampers; Combination fire and smoke dampers; Fire dampers; Smoke dampers

Acceptance testing 3-4.5, A-3.4.5.2, A-3.4.5.4

Controls 2-3.4.4

Integration with building construction 2-3.7

Installation 2-3.10.4, A-3.4.2

Maintenance 5-3, B-2

Definitions 1-6, A-1-6

Detectors see Smoke detectors

Detection and correctional occupancies 2-3.11.1, A-3.11.1

Duct distribution plenums 2-3.5.3.1, B-5.2

Ducts, air see Air ducts

Egress corridors 2-3.5.1, A-2-3.5.1

Electrical duct heaters 2-3.4.5

Electrical wiring and equipment 1-6

Ceiling cavity plenums 2-3.5.3.1

Filters 2-3.5.3

Heating, ventilating, and air-conditioning (HVAC) systems 2-3.4

Raised floor plenums 2-3.5.10.6

Environmental air (definition) 1-6

Evaporative coolers 2-3.4.6

Exhaust systems see Smoke control systems

Exits 2-3.11.2

Exposed fan inlets 2-3.5.3

Approved (definition) 1-6, A-1-6

Authority having jurisdiction (definition) 1-6, A-1-6

Barriers, smoke see Smoke barriers

Building construction, integration of ventilation and air-conditioning systems with Chap. 5, A-5

Combination fire and smoke dampers 2-3.5.2, 2-3.5.2

Definition 1-6

Construction 2-3.1, 2-3.3

Integration of ventilation and air-conditioning systems in Chap. 5, A-5

Controls Chap. 4, A-4

Acceptance tests 5-3, A-5-3.1

Maintenance B-9

Coolers, evaporative 2-3.4.6

Cooling, mechanical 2-3.4.5

Cooling equipment 2-3.4

Corridor air systems 2-3.11, A-2-3.11.1

Coverings, air duct see Air duct coverings

Dampers see also Ceiling dampers; Combination fire and smoke dampers; Fire dampers; Smoke dampers

Acceptance testing 3-4.5, A-3.4.5.2, A-3.4.5.4

Controls 2-3.4.4

Integration with building construction 2-3.7

Installation 2-3.10.4, A-3.4.2

Maintenance 5-3, B-2

Definitions 1-6, A-1-6

Detectors see Smoke detectors

Detection and correctional occupancies 2-3.11.1, A-3.11.1

Duct distribution plenums 2-3.5.3.1, B-5.2

Ducts, air see Air ducts

Egress corridors 2-3.5.1, A-2-3.5.1

Electrical duct heaters 2-3.4.5

Electrical wiring and equipment 1-6

Ceiling cavity plenums 2-3.5.3.1

Filters 2-3.5.3

Heating, ventilating, and air-conditioning (HVAC) systems 2-3.4

Raised floor plenums 2-3.5.10.6

Environmental air (definition) 1-6

Evaporative coolers 2-3.4.6

Exhaust systems see Smoke control systems

Exits 2-3.11.2

Exposed fan inlets 2-3.5.3
Furnaces .. 3-3.2 to 3-3.3, A-3-3.3
Floors and floor assemblies, fire-rated .. 1-1, 2-3.4.2, 5-3.2
Fire protection devices and systems ..
Filters, air .. see Air filters
Fire dampers .. 2-2.1.4, 2-3.9, 3-3.5, 3-4.3, 3-4.5 to 3-4.7, A-3-3.1, A-3-3.2, A-3-3.5.1, A-3-4.3, A-3-4.5.2, A-3-4.5.4
Acceptance tests .. 5-2
Maintenance .. 8-2
Fire protection devices and systems .. 1-6, 2-3.4, 5-3.5.1
Fire resistance ratings ..
Definition .. 1-6, A-1-6
Floors and floor assemblies .. 3-3.2 to 5-5.3, A-5-5.3
Roof-ceiling assemblies .. 5-3.3, A-5-5.3
Walls and partitions .. 5-3.1, A-5-5.1
Fire walls (definition) .. 1-6
Flame spread index (definition) .. 16, A-1-6
Floors and floor assemblies, fire-rated .. 3-3.2 to 5-5.3, A-5-5.3
Furnaces .. 2-2.1
Gas-fired furnaces .. 2-2.4

Health care occupancies .. 2-3.11.1, A-2-3.11.1
Heat recovery equipment .. 2-4.7
Heaters, in air ducts .. 2-2.4.3, 2-3.5.3
Heating, ventilating, and air-conditioning (HVAC) systems Chap. 2, 2-4.2
Access to 2-2.1.1, 2-2.4.2
Air distribution .. 2-3
Electrical wiring and equipment .. 2-1.4
General requirements .. 2-1
Installation .. 2-1.1, 2-2.1.4, 2-3.9, 3-3.5, 3-4.3, 3-4.5 to 3-4.7, A-3-3.3
Location of equipment .. 2-1.1
Materials .. 2-2.4.2
Selection .. 2-1.2
System components .. 2-2
Heating equipment .. 2-2.4

Intakes, air .. see Air intakes
Inspection forms .. B-1.3
Inspections .. 2-3.4, A-2-3.4.1, B-4
Air ducts .. 2-2.4.3, 2-3.5.3.1, 3-4.6.4
Dampers .. 3-4.6.5
Filters .. B-5
Plenums .. B-5
Installation .. 2-3.4, A-2-3.4.1
Air ducts .. 2-3.4, A-2-3.4.1
Dampers .. 3-4.6.5
Electrical wiring and equipment .. 4-1
Heating, ventilating, and air-conditioning (HVAC) systems 2-4.2, 2-4.3, 2-2.1.4, 2-3.9, 3-3.5, 3-4.3, 3-4.5 to 3-4.7
Smoke detectors .. 4-4.4
Intakes, outside air .. see Outside air intakes
Introduction to standard .. 1-1

Limited-combustible material .. 2-3.10.2(a), 2-3.10.6(a)
 Listed (definition) .. 1-6, A-1-6
Maintenance .. 5-4.7, A-5-4.1, App. B
Manual controls .. 4-2, 4-3.1
Mechanical cooling .. 2-4.3

Noncombustible material .. 2-3.10.2(a), 2-3.10.6(a)
Definition .. 1-6

Old-fired furnaces .. 2-4.4
Openings Patching, filling, and repairing .. 3-6.4
Protection of .. 5-3, A-5-3.1
Operating systems, acceptance tests .. 5-3, A-5-3.1
Optical fibers .. 2-5.10.2(a)
Raised floor plenum .. 2-5.10.6(a)
Outlets, air .. see Air outlets
Outside air intakes .. 2-2.1
Maintenance .. B-7
Repair work .. B-6

Partitions, fire-rated .. 3-3.1, A-3-3.1
Penetration protection requirements .. 5-3, A-5-3.1
Plenums .. 2-3.11.1 to 2-3.5.3, 2-5.10.2(a)
Cladding .. 5-3.1, A-5-5.1
Definition .. 1-6
Inspection .. B-5
Repair work .. B-6
Storage, use for .. 2-5.10.1, 2-5.10.2(a), B-5.3
Pneumatic tunneling ..
Ceiling cavity plenum .. 2-5.10.2(a)
Raised floor plenum .. 2-5.10.6(a)
Purpose of standard .. 1-5

Rear floor plenums .. 2-5.10.6, B-5.2
Reference publications Chap. 6, App. C
Refrigeration .. 2-4.3
Repair work .. B-6
Residential occupancies .. 2-3.11.1, A-2-3.11.1
Roof-ceiling assemblies, fire-rated .. 5-3.3, A-5-3.3

Scope of standard .. 1-2, A-1-2
Shells .. 5-3, 5-3.4
Shall (definition) .. 1-6
Should (definition) .. 1-6
Smoke (definition) .. 1-6
Smoke barriers .. 2-3.3, 3-3.5, 3-4.3, 3-4.5.3, A-3-5.5.1, A-4-4.3
Definition .. 1-6, A-3-4.6
Smoke control .. 2-5.12, 3-3.5.1, 3-4.3, A-4-4.1, A-2-3.12, A-3-4.5, A-3-4.5.2, A-3-4.5.4
Definition .. 1-6
Smoke dampers .. 2-2.1.4, 2-3.9.3, 3-3.5, 3-4.5.5 to 3-4.7
Acceptance tests .. 5-2
Controls .. 4-5, A-4.5
Definition .. 1-6, A-4.6
Maintenance .. B-2
Smoke detectors
- For automatic control: A-4, 4-4
- Ceiling cavity plenums: D-3.10.2(a)
- Definition: A-4
- Raised floor plenums: D-3.10.6(a)

Smoke developed index (definition)
- A-1-6

Solar energy systems
- A-2.4.2, A-3.5.3

Sprinkler systems
- Ceiling cavity plenums: D-3.10.2(a)
- Raised floor plenums: D-3.10.6(a)

Standby power
- A-4.4.4, A-5-2

Structural members
- A-5-2

Testing
- A-5-2

Acceptance
- A-5-2

Walls
- Fire (definition): A-6
- Fire-rated: A-3-1, A-4-5.1

Wiring
- See Electrical wiring and equipment

1999 Edition

19A-20